Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A<sc>bstract</sc> Measurements of light-by-light scattering (LbL,γγ → γγ) and the Breit-Wheeler process (BW,γγ →e+e−) are reported in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV. The data sample, corresponding to an integrated luminosity of 1.7 nb−1, was collected by the CMS experiment at the CERN LHC in 2018. Events with an exclusively producedγγore+e−pair with invariant massesmγγ,ee>5 GeV, along with other fiducial criteria, are selected. The measured BW fiducial production cross section,σfid(γγ → e+e−) = 263.5±1.8(stat)±17.8(syst)μb, as well as the differential distributions for various kinematic observables, are in agreement with leading-order quantum electrodynamics predictions complemented with final-state photon radiation. The measured differential BW cross sections allow discrimination between different theoretical descriptions of the photon flux of the lead ion. In the LbL final state, 26 exclusive diphoton candidate events are observed compared with 12.0 ± 2.9 expected for the background. Combined with previous results, the observed significance of the LbL signal with respect to the background-only hypothesis is above five standard deviations. The measured fiducial LbL scattering cross section,σfid(γγ→γγ) = 107 ± 24(stat) ± 13(syst) nb, is in agreement with next- to-leading-order predictions. Limits on the production of axion-like particles coupled to photons are set over the mass range 5–100 GeV, including the most stringent limits to date in the range of 5–10 GeV.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Charged hadron elliptic anisotropies ( ) are presented over a wide transverse momentum ( ) range for proton-lead ( ) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively. The data were recorded by the CMS experiment and correspond to integrated luminosities of 186 and for the and PbPb systems, respectively. A four-particle cumulant analysis is performed using subevents separated in pseudorapidity to effectively suppress noncollective effects. At high ( ), significant positive values that are similar between and PbPb collisions at comparable charged particle multiplicities are observed. This observation suggests a common origin for the multiparticle collectivity for high- particles in the two systems.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            A<sc>bstract</sc> The first measurement of the dijet transverse momentum balancexjin proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of$$\sqrt{{s}_{\text{NN}}}$$= 8.16 TeV is presented. Thexjobservable, defined as the ratio of the subleading over leading jet transverse momentum in a dijet pair, is used to search for jet quenching effects. The data, corresponding to an integrated luminosity of 174.6 nb−1, were collected with the CMS detector in 2016. Thexjdistributions and their average values are studied as functions of the charged-particle multiplicity of the events and for various dijet rapidity selections. The latter enables probing hard scattering of partons carrying distinct nucleon momentum fractionsxin the proton- and lead-going directions. The former, aided by the high-multiplicity triggers, allows probing for potential jet quenching effects in high-multiplicity events (with up to 400 charged particles), for which collective phenomena consistent with quark-gluon plasma (QGP) droplet formation were previously observed. The ratios ofxjdistributions for high- to low-multiplicity events are used to quantify the possible medium effects. These ratios are consistent with simulations of the hard-scattering process that do not include QGP production. These measurements set an upper limit on medium-induced energy loss of the subleading jet of 1.26% of its transverse momentum at the 90% confidence level in high multiplicity pPb events.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called “brems flipping,” as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE’s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            A<sc>bstract</sc> The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4ℓ, ℓ= e,μ) final state at a center-of-mass energy$$\sqrt{s}$$= 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H → ZZ → 4ℓinclusive fiducial cross section is measured to be$${2.89}_{-0.49}^{+0.53}{\left({\text{stat}}\right)}_{-0.21}^{+0.29}\left({\text{syst}}\right)$$fb, in agreement with the standard model expectation of$${3.09}_{-0.24}^{+0.27}$$fb.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Abstract This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of thedE/dxmodel on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            An analysis is presented based on models of the intrinsic transverse momentum (intrinsic ) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans 3 orders of magnitude in center-of-mass energy and 2 orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic parameters, independent of the dilepton invariant mass at a given center-of-mass energy.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            A<sc>bstract</sc> A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at$$ \sqrt{s} $$ = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb−1, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation (τ′) leptons with an electric charge equal to or twice the absolute value of the electron charge (e). An interpretation of a Z’ boson decaying to twoτ′ leptons with an electric charge equal to 2eis presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            A search is presented for fractionally charged particles with charges below , using their small energy loss in the tracking detector as a key variable to observe a signal. The analyzed dataset corresponds to an integrated luminosity of of proton-proton collisions collected at in 2016–2018 at the CERN LHC. This is the first search at the LHC for new particles with a charge between and , including an extension of previous results at a charge of . Masses up to 640 GeV and charges as low as are excluded at 95% confidence level. These are the most stringent limits to date for the considered Drell-Yan-like production mode.more » « lessFree, publicly-accessible full text available April 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
